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Abstract

Most diffraction tomography (DT) algorithms use a homogeneous Green function (GF)
regardless of the medium being imaged. This choice is usually motivated by practical consid-
erations: analytic inversions in standard geometries (Cartesian, spherical, etc.) are significantly
simplified by the use of a homogeneous GF, estimating a non-homogeneous GF can be very
difficult, as can incorporating a non-homogeneous GF into standard DT algorithms. Devaney
has circumvented these issues by developing a purely numerical DT inversion algorithm [1]
which is independent of measurement system geometry, number of frequencies used in the re-
construction, and GF. A planar multilayer GF has been developed for use in Devaney’s “Hilbert
space” algorithm and used to image non-invasively a flaw in a planar multilayer medium using
data collected from an ultrasonic measurement system. The data were collected in a multistatic
method with no beamforming: all focusing through the multilayer was performed mathemati-
cally “after-the-fact,” that is after the data were collected.
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1 Introduction

Most diffraction tomography (DT) algorithms use a homogeneous Green function (GF) regardless
of the medium being imaged. This choice is motivated by practical considerations: analytic in-
versions in “nice” (planar, circular, spherical, etc.) geometries are significantly simplified by the
use of a homogeneous GF which has convenient decompositionsin those coordinate systems, and,
estimating a non-homogeneous GF and incorporating it into standard DT algorithms can be very
difficult if not mathematically impossible. Devaney has circumvented these issues by developing
a purely numerical DT inversion algorithm [1] which is independent of measurement system ge-
ometry, number of frequencies used in the reconstruction, and GF. It is based upon a projection
operator interpretation of the forward scattering integral. The projection constitutes a Hilbert space
mapping from acontinuous object spaceto a discrete measurement space. The algorithm is de-
scribed in detail in [1], and [2] where it was shown to be successful in reconstructing synthetic data
from an annular outwardly-directed measurement system.

Here, we apply the Hilbert space algorithm to a planar multilayer domain with the goal of
inverting a multistatic ultrasonic data set. To this end, wedeveloped a scalar planar multilayer
GF. Our GF solution is not new. Complete and detailed planar multilayer GF solutions have been
previously derived for many applications [3, 4, 5, 6]. We do not, however, require the accuracy
of these solutions since our reconstructions are limited bymeasurement noise and limited data.
Additionally, we explicitly filter out evanescent field information since it is, for practical purposes,
unusable at the propagation dimensions of our problem. We dorequire a model which accounts
for the reverberation and multipath scattering within and between layers. We also require com-
putational speed since our multilayer GF must be computed repeatedly over all combinations of
transducers and frequencies.

The combination of the Hilbert space algorithm with the planar multilayer GF has successfully
imaged a hole, the “flaw,” in the copper layer of an aluminum/copper multilayer. The data were
collected using a 5 MHz linear ultrasonic array in a multistatic method whereby each transmitter
sequentially launched the primary field into the medium and the scattered field was measured at all
receivers. No beamforming was performed during data collection: we accounted for the multilayer
nature of the medium, mathematically through the multilayer GF, “after-the-fact,” that is after the
data were collected.

In most non-destructive evaluation (NDE) cases, prior knowledge of the internal structure of a
part under evaluation is known via design or manufacturing specification. Thus, for NDE purposes,
it is reasonable that the individual medium layer material properties and specifications are well
known and understood. In this case, the inverse wave imagingis used to identify deviations from
how the medium was assembled or built (the “as built” versus the “as designed” problem).

We review the derivation of the Hilbert space inverse wave algorithm in the next section. We
summarize the development of our planar multilayer Green function in Section 3. The results are
presented in Section 4 for simulated and experimental data sets on the aluminum/copper multilayer.
Our conclusions are in Section 5.

2



2 Hilbert Space Inverse Wave Algorithm

The Hilbert space inverse wave (HSIW) algorithm [1, 2] interprets the forward scattering operator
as a mapping from a continuous, real, object space to a discrete measurement space consisting of
the discrete transceiver locations and, optionally, the discrete frequencies at which the measured
data are collected. We summarize the HSIW algorithm here; details are presented in the references.

The forward scattering process is described by

ψscat(Rr
m,R

t
n, ω) = k2

0(ω)
∫

dr G0(R
r
m, r, ω) o(r) ψ(r,Rt

nω), (1)

where
ψscat(Rr

m,R
t
nω) is thescatteredfield measured at themth receiver resulting from the

nth source;

ψ(r,Rt
n, ω) is thetotal field resulting from thenth source;

R
r
m is the receiver location;

R
t
n is the source location;

ω is temporal frequency;
k0(ω) is the background wavenumber defined asω/v0;
v0 is the background velocity;
G0(R

r
m, r, ω) is the homogeneous background Green function;

o(r) is the object function to be imaged, defined as(k2(r)/k2
0) − 1, and;

k(r) is the object function wavenumber.

The total field appearing under the integral of Eqn. 1 is the sum of the incident and scattered
fields. In many instances it is possible to replace the total field by the incident field using the Born
approximation. This permits the development of a linearized inversion of the integral. We assume
the incident field is due to a point source located atR

t
n:

ψinc(r,Rt
n, ω) = P (ω) G(r,Rt

n, ω), (2)

whereP (ω) is the spectrum of the incident pulse. Substituting Eqn. 2 into Eqn. 1, we arrive at our
forward, distorted Born approximation, scattering model:

ψscat
B (Rr

m,R
t
n, ωl) = P (ωl) k

2
0(ωl)

∫

dr G0(R
r
m, r, ωl) o(r) G(r,Rt

n, ωl), (3)

where theB superscript indicates the approximation. As all the measured data will be discretized
on a digital computer, we have explicitly discretized the frequencies at which the data are collected
via ωl wherel = 0, 1, · · · , Nf − 1 andNf is the number of frequencies in the pulse band width.

The HSIW interprets Eqn. 3 as a mapping from acontinuous object spaceto adiscrete mea-
surement space. The object space is the physicalr space of the object function. The measurement
space consists of the discrete transducer locations and temporal frequencies at which the scattered
data are measured. The scattering operator projects the object onto the measurement space. To for-
mulate explicitly Eqn. 3 as a projection operator, we define the forward propagation or projection
kernel as

Π∗(r) ≡ P (ωl) k
2
0(ωl) G0(R

r
m, r, ωl) G(r,Rt

n, ωl), (4)
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whereΠ(r) is aJ ≡ (Nsrc×Nrcv ×Nf) element column vector,Nsrc is the number of sources,
andNrcv is the number of receivers. Mathematically, the projectionis represented as an inner
product between the object function and the kernel via,

D =
∫

dr Π∗(r) o(r) ≡ 〈Π, o〉 , (5)

whereD is a J element column vector of measured data values at each source, receiver, and
frequency combination. Symbolically, we define the forwardscattering operator,K, as

K[·] ≡
∫

dr Π∗(r) [·]. (6)

Using the mathematics of linear algebra, it is shown [1, 2] the inverse of Eqn. 6 which reconstructs
the object function is

ô(r) =
J−1∑

j=0

1

σ2
j

ΠT (r) uju
†
jD, (7)

where theσj anduj are the singular values and measurement space singular vectors ofK, respec-
tively. Explicitly, these are defined by the normal equations of the singular system:

Kvj(r) = σjuj , (8)

K†uj = σjvj(r), (9)

where theuj span the measured data space, and thevj(r) span the object space. The measurement
system is inherently ill-conditioned due to the limited aperture of the measurement system which
only measures part of the scattered field, and due to the loss of the evanescent field information.
Thus, a subset of the singular values must be rejected: they carry no useful object information
and must not be used in the reconstruction of Eqn. 7. A decision must be made on the number of
singular values/vectors to use. We have chosen to use theBest Rank Napproximation. We compute
the ratio

R(N) =

N−1∑

j=0

σ2
j

J−1∑

j=0

σ2
j

, (10)

where we assume the singular values are arranged from smallest to largest:σ2
0 ≤ σ2

1 ≤ · · · ≤ σ2
J−1.

PlottingR(N), we graphically identify the point at which the function starts to rise rapidly. The
index of the singular value at which this occurs, we label asJ0. With this value determined, our
final reconstruction is

ô(r) =
J−1∑

j=J0

1

σ2
j

ΠT (r) uju
†
jD. (11)
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Our experience reconstructing both simulated and experimentally collected scattered field data
have shown that this criterion works consistently well.

The HSIW algorithm versatility lies in its ability to form reconstructions using any geometrical
transducer configuration and any number of frequencies. It requires only the Green functions of
Eqn. 4. For the current case of interest, we takeG0(r, r

′, ω) to be the free space Green function,

G0(r, r
′, ω) =







i
4
H

(1)
0 (k0(ω)|r− r

′|) 2D,

1
4π|r−r′|

eik0(ω)|r−r
′| 3D,

(12)

which is used to propagate a field from a point within the medium to the receiver. ForG(r, r′, ω),
we use a multilayer Green function which permits us to propagate a field from a transducer through
the layers to a point within the medium. This enables us to focus “after-the-fact”, that is, after
the data have been collected without the use of beam forming,on targets within the multilayer
structure. We develop our Green function in the next section.

3 Mathematical Statement of the Planar Multilayer Problem

Consider the planar multilayer geometry of Figure 1. Each layer is identified by its bottom bound-
ary, zl. The top most layer, layer 0, is defined byz0. We assume the source is located on or
above the top layer. The wavenumber associated with each layer iskl(ω) ≡ vl/ω wherevl is the
wave field propagation velocity andω the temporal radial frequency. We wish to solve the Green
function equation,

[

∇2 + k2(z)
]

G(r, r′, ω) = −δ(r − r
′), (13)

where the depth-dependent wavenumber,k(z), is given by

k(z) =







k0(ω) z ≤ z0
k1(ω) z0 < z ≤ z1

...
kL−2(ω) zL−3 < z ≤ zL−2

kL−1(ω) z > zL−2,

(14)

the source location isr′ ≤ z0 (that is, located on or above the top layer), andG(r, r′, ω) is the
planar multilayer Green function to be determined (for thissection, theω dependence is implicit).
Following a method similar to Chapter 4 of [3], we separate the coordinate system intoplanarand
perpendicularcomponents:r ≡ (r⊥, z) andr

′ ≡ (r′⊥, z
′), and perform a planar Fourier transform

(PFT) of Eqn. 13 along the planar,r⊥, coordinate using the transform pair,

ψ̃(k⊥, z) =
∫

dr⊥ ψ(r⊥, z) e
−ik⊥·r⊥, (15)

ψ(r⊥, z) =
1

(2π)n

∫

dk⊥ ψ̃(k⊥, z) e
ik⊥·r⊥, (16)
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wheren is the dimensionality of the problem, to achieve:
[

∂2
z + k2(z) − |k⊥|

2
]

G̃(k⊥, z; r
′
⊥, z

′;ω) = −e−ik⊥·r′
⊥δ(z − z′). (17)

Equation 17 is a one dimensional ordinary differential equation in z. We simplify the notation by
defining

γ2
l ≡ kl(z)

2 − k
2
⊥, (18)

w(r′⊥) ≡ e−ik⊥·r′
⊥, (19)

where thez−dependence inγn is implicit. With these definitions, the equation to be solved reads
[

∂2
z + γ2

l

]

G̃(k⊥, z; r
′
⊥, z

′;ω) = w(r′⊥) δ(z − z′). (20)

In Sections 3.1 through 3.3, we develop the solution Eqn. 20 following a technique similar to
that used by DiNapoli and Deavenport [4] although we use planar Cartesian rather than polar
coordinates. The solution is derived analytically but computed numerically. A numerical inverse
PFT is used computeG(r, r′, ω) from G̃(k⊥, z; r

′
⊥, z

′;ω). We develop the full solution by dividing
the problem into three parts:

1. We solve the problem of two layers with a source in Section 3.1;

2. We develop the solution between two arbitrary source-free layers in Section 3.2;

3. We combine these two solutions in Section 3.3 to achieve the full multilayer solution.

3.1 Two Layers With A Source

The solution to Eqn. 20 in the top two layers is

G̃(k⊥, z; r
′
⊥, z

′;ω) =







A<(k⊥, z
′)e−iγ0z z < z′,

A>(k⊥, z
′)eiγ0z +R0(k⊥)e−iγ0z z′ < z ≤ z0

T1(k⊥)eiγ1z +R1(k⊥)e−iγ1z z > z0,

(21)

whereA<(k⊥, z
′) andA>(k⊥, z

′) are the point source field coefficients,R0(k⊥) is the layer 0
reflection coefficient, and,T1(k⊥) andR1(k⊥) are the layer 1 transmission and reflection coeffi-
cients, respectively.R1(k⊥) is included for completeness, were thereonly two layers,R1(k⊥) ≡ 0.
Equation 21 has five coefficients to be determined (A<(k⊥, z

′), A>(k⊥, z
′), R0(k⊥), T1(k⊥) and

R1(k⊥)). We impose field boundary conditions (BC) about the source location andz0 interface to
solve for the coefficients. The conditions are

• Continuity ofG(k⊥, z; r
′
⊥, z

′;ω) about the source locationz = z′;

• Step discontinuity of∂zG(k⊥, z; r
′
⊥, z

′;ω) about the source locationz = z′;
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• Continuity ofG(k⊥, z; r
′
⊥, z

′;ω) at the layer interface,z = z0;

• Continuity of∂zG(k⊥, z; r
′
⊥, z

′;ω) at the layer interface,z = z0.

Applying the BC and simplifying, we arrive at the following matrix relationship between the trans-
mission and reflection coefficients of each layer:

v1 = U−1
1 (z0)U0(z0)v0, (22)

where

U0(z0) ≡






i
2γ0
w(r′⊥)eiγ0(z0−z′) e−iγ0z0

i
2
w(r′⊥)eiγ0(z0−z′) −γ0e

−iγ0z0




 , (23)

v0 ≡






1

R0(k⊥)




 , (24)

Ul(z) ≡






eiγlz e−iγlz

γle
iγlz −γle

−iγlz




 , (25)

vl ≡






Tl(k⊥)

Rl(k⊥)




 . (26)

Thus, given the boundary conditions,v0, at the top layer (layer 0), we may solve for the layer 1
coefficients via Eqn. 22.

3.2 Solution Between Two Source-Free Layers

In a source-free region, Eqn. 20, reduces to
[

∂2
z + γ2

l

]

G̃(k⊥, z; r
′
⊥, z

′;ω) = 0. (27)

The solution is

G̃(k⊥, z; r
′
⊥, z

′;ω) =







Tl(k⊥)eiγlz +Rl(k⊥)e−iγlz zl−1 < z ≤ zl

Tl+1(k⊥)eiγl+1z +Rl+1(k⊥)e−iγl+1z zl < z ≤ zl+1.
(28)

Imposing continuity in the field and its derivative (there isno source within this region), we arrive
at the relationship between the layer coefficients:

vl+1 = U−1
l+1(zl)Ul(zl)vl, (29)

where we have used the definitions of Eqns 25 and 26. Eqn. 29 gives us a method for computing
the transmission and reflection coefficients for the(l+1)th layer given those in thelth layer. In the
next section we combine the results from this and the previous section to derive the full, multilayer
Green function.
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3.3 Full Multilayer Solution

Let there beL layers labeled from[0, L − 1] as shown in Figure 1. The full multilayer solution
Green function which is a solution to Eqn. 20 is

G̃(k⊥, z; r
′
⊥, z

′;ω) =







A<(k⊥, z
′)e−iγ0z z < z′,

A>(k⊥, z
′)eiγ0z +R0(k⊥)e−iγ0z z′ < z ≤ z0,

T1(k⊥)eiγ1z +R1(k⊥)e−iγ1z z0 < z ≤ z1,

T2(k⊥)eiγ2z +R2(k⊥)e−iγ2z z1 < z ≤ z2,

...

TL−1(k⊥)eiγL−1z +RL−1(k⊥)e−iγL−1z z > zL−1.

(30)

The coefficients,A<(k⊥, z
′), A>(k⊥, z

′), {Rl(k⊥)}L−1
l=1 , and{Tl(k⊥)}L

l=0, are to be determined.
R0(k⊥) andTL−1(k⊥) are set by the top and bottom layer boundary conditions (BC) imposed on
Eqn. 20. Those BC are

v0 =






1

R0(k⊥)




 for the top layer, (31)

vL−1 =












TL−1(k⊥)

0




 for an infinite or non-reflecting bottom layer,






TL−1(k⊥)

TL−1(k⊥)




 for a perfectly reflecting bottom layer.

(32)

The matching conditions for each layer are

U0(z0)v0 = U1(z0)v1

U1(z1)v1 = U2(z1)v2

U2(z2)v2 = U3(z2)v3
...

UL−2(zL−2)vL−2 = UL−1(zL−2)vL−1

(33)

Eliminating all but the top and bottom coefficients of Eqns. 33, we find

v0 = U−1
0 (z0)U1(z0)U

−1
1 (z1)U2(z1)U

−1
2 (z2)U3(z2) · · ·U

−1
L−2(zL−2)UL−1(zL−2)vL−1. (34)
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We simplify the notation by defining

H ≡ U−1
0 (z0)U1(z0)U

−1
1 (z1)U2(z1)U

−1
2 (z2)U3(z2) · · ·U

−1
L−2(zL−2)UL−1(zL−2), (35)

and expressing Eqn. 34 as

v0 = HvL−1. (36)

Solving Eqn. 36 forR0(k⊥) andTL−1 determinesv0 andvL−1. The remaining coefficients are then
calculated using Eqn. 29.

3.3.1 Solution For Infinite Bottom Layer

For an infinite bottom layer there is no reflection. Thus we setRL−1(k⊥) = 0, reducing Eqn. 36 to





1

R0(k⊥)






︸ ︷︷ ︸

v0

=






H11 H12

H21 H22






︸ ︷︷ ︸

H






TL−1(k⊥)

0






︸ ︷︷ ︸

vL−1

, (37)

which yields

TL−1(k⊥) =
1

H11
, (38)

R0(k⊥) =
H21

H11
(39)

as solution.

3.3.2 Solution For Perfectly Reflecting Bottom Layer

For a perfectly reflecting bottom layer, the reflection and transmission coefficients are identical.
We setRL−1(k⊥) = TL−1(k⊥), reducing Eqn. 36 to






1

R0(k⊥)




 =






H11 H12

H21 H22











TL−1(k⊥)

TL−1(k⊥)




 , (40)

which yields

TL−1(k⊥) =
1

H11 + H12
, (41)

R0(k⊥) =
H21 + H22

H11 + H12
(42)

as solution.
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3.4 Practical Considerations for Evanescent Fields

In anticipation of working with multilayer parts whose layer thickness are many wavelengths, we
explicitly filter out the evanescent field information priorto performing an inverse planar Fourier
transform of Eqn. 30. Explicitly, we compute

GLP(r, r′, ω) = F−1
PFT

{

G̃(k⊥, z; r
′
⊥, z

′;ω)hl(k⊥)
}

, (43)

wherehl(k⊥) is a depth-dependent Hanning window whose width is proportional to thekl(ω)
propagating frequency cut-off of thelth layer,F−1

PFT {·} is the inverse planar Fourier transform of
Eqn. 16, and the “LP” subscript on the Green function indicates that the Green function has been
low-pass filtered. Referring to Eqn. 4, we set

G(r,Rt
n, ω) = GLP(r,Rt

n, ω).

This is motivated by the exponentially decaying nature of the evanescent field which, when back
propagated in the presence of noise (measurement and numerical), results in instabilities. Addition-
ally, as the field propagates from the source down through successive layers, we do not propagate
fields that have been cut-off in higher layers to subsequent layers, even if they can support those
spatial field frequencies. Explicitly, if

kl(ω) > kl−1(ω),

we only propagate frequencies up tokl−1(ω) for all subsequent layers until a layer with a lower
cut-off is encountered.

In Section 2, we reviewed the inversion algorithm. In Section 3, we summarized the derivation
of the planar multilayer Green function to be used in the inversion algorithm. In the following
sections, we apply our planar multilayer inversion algorithm to simulated and experimental data.

4 Experimental Setup & Full Wave Simulation

The experimental setup consisted of a 32 element 5 MHz ultrasonic array. The transducers had a
1 mm pitch and served as both sources and receivers. The measured data were fully multistatic in
that each source successively launched the incident field into the medium and the scattered field
was recorded at all receivers. No beamforming was performedduring the data collection, nor did
we account for the multilayer structure of the medium.

The part under evaluation was an aluminum block epoxy bondedonto a copper block. The
aluminum layer was 13 mm thick; the copper layer was 9 mm thick. A “defect” in the form of a 1
mm radius hole was drilled into the middle of the copper layer. The experimental aluminum/copper
multilayer setup is pictured in Figure 2.

In conjunction with the experiment, we performed a two-dimensional finite-difference time-
domain (FDTD) simulation of the setup using E3D, an explicit2D/3D elastic wave propagation

10



code developed at Lawrence Livermore National Laboratory [7, 8, 9, 10, 11, 12]. The code sim-
ulates full wave scattering and requires as inputs a longitudinal velocity distribution, a transverse
velocity distribution, and a density distribution.

The FDTD simulation domain, shown in Figure 3, consisted of four layers: air, aluminum,
copper, air. The physical parameters assigned to aluminum/copper layers, required by E3D, are
shown in the graphic. An air-filled hole with a radius of 1 mm was inserted 4 mm below the
aluminum/copper interface.

Both the simulation and experiment used a Gaussian windowedsine as incident pulse:

p(t) = sin (ω0t) e
−t2/(2σ2), (44)

whereω0 ≡ 2πf0, σ ≡ Ncyc/ω0, andNcyc is the number of cycles in the pulse. We usedf0=5
MHz and 5 cycles. The pulse spectrum magnitude is shown in Figure 4 for both the simulated and
experimental data sets. The highlighted regions of the curves show the 58 discrete frequencies used
in the reconstructions. As discussed in [2], the Hilbert space algorithm is computationally intensive
and demanding upon computer storage. Thus, we were unable touse the full pass band of the pulse
spectrum in our reconstructions. The Green function computed for the HSIW algorithm consisted
of an air/aluminum/copper/air multilayer.

In processing both the experimental and simulated data, we discovered that shear (transverse)
waves which are not modeled in the theory of Sections 2 and 3, corrupted the reconstructions when
we used the entire 32 element aperture. This was caused by late arriving shear waves at receivers
distant from the source. In order to filter out these slower moving shear waves, we processed the
data using successive, over-lappingsub-aperturesrather than thefull aperture.

In full aperture processing (refer to Figure 5 (a)), the timeseries measured atall receivers are
used for each transmitter. Scattered field time series seen at receivers farther removed from the
transmitter, contained both the pressure (longitudinal) waves and later arriving shear waves. As
the latter were not included in the models, they corrupted the reconstructions.

In sub-aperture processing, we formed sub-arrays consisting of a central transmitter/receiver
surrounded by equal numbers of receivers as shown in Figure 5(b). By sequentially indexing the
sub-array over to the next transmitter/receiver, the entire data set was processed. In this manner,
we succeeded in spatially reducing the shear wave corruption of the reconstruction algorithm. We
wish to emphasize that the sub-aperture processing was performed after the data were collected.

The reconstructions are presented in Figures 6 and 7 for the simulated and experimental data
sets, respectively. The top plot of Figure 6 (a) shows the Best RankN curve of Eqn. 10 used for
thresholding the singular values; the bottom shows the actual singular value distribution. Using
the Best RankN criterion, we determined the top 10% of the singular values should be used in the
reconstruction in Figure 6 (b). The flaw is clearly visible and correctly located.

Figure 7 shows the results for the experimental data set. In this case, the top 13% of the singular
values were used. The reconstruction of Figure 7 shows excellent localization and contrast of the
flaw.
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5 Conclusions

We developed a scalar planar multilayer Green function for use in the Hilbert space inverse wave
tomographic algorithm and used the latter to image a flaw in analuminum/copper multilayer. We
demonstrated our ability to focus successfully through themultilayer medium “after-the-fact,” that
is after the data have been collected in a multistatic mannerwithout beamforming or taking into
account, during data collection, the multilayer nature of the part.

In most non-destructive evaluation (NDE) cases, prior knowledge of the integral structure of a
part under evaluation is known via blueprints or other manufacturing specification. Thus, for NDE
purposes, it is reasonable that the individual medium layermaterial properties and specifications
are well known and understood. In this case, the inverse waveimaging is used to identify deviations
from how the medium was assembled or built. This is the “as-built” versus the “as-designed”
problem. This algorithm can also be used to determine and track the aging of parts. We hope to
develop spherical and cylindrical multilayer Green functions for other NDE applications.
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Figure 1:Multilayer geometry in the planar Fourier domain. There are{l}L−1
l=0 layers. The source

is located atz′ ≤ z0.
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Figure 2:Aluminum/Copper photograph. The aluminum bar below the copper layer is a support
for the photograph and was not present during the data collection.
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Figure 3:Air/Aluminum/Copper/Air multilayer simulation geometry.
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Figure 4:Spectrum of 5 MHz, 5 cycle, Gaussian windowed sine spectrum magnitude used in (a)
the FDTD simulation; and (b) the experiment. The highlighted parts of the curves show the 58
discrete frequencies used in the reconstructions.
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Figure 5: Full aperture and sub-aperture processing. (a) In full aperture processing, the time
series measured at all receivers are processed together. (b) In sub-aperture processing, the data
from a shifting sub-array consisting of a transmitter/receiver surrounded by an equal number of
receivers, are processed together.
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Figure 6:Reconstruction of simulated data set. (a) The top plot showsthe Best RankN approxi-
mation of Eqn. 10. The dashed line shows the threshold below which none of the singular values
were used in the reconstruction of Eqn. 11. The bottom plot shows the actual singular value distri-
bution. (b) The reconstruction. The circle superposed on the image shows the true location of the
flaw. Theλ metric is the wavelength of the field in the top, aluminum, layer atf0 =5 MHz.
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Figure 7: Reconstruction of experimental data set. (a) The top plot shows the Best RankN ap-
proximation of Eqn. 10. The dashed line shows the threshold below which none of the singular
values were used in the reconstruction of Eqn. 11. The bottomplot shows the actual singular value
distribution. (b) The reconstruction. The circle superposed on the image shows the approximate
location of the flaw. Theλmetric is the wavelength of the field in the top, aluminum, layer atf0 =5
MHz.
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